

# Preparation and Rheological Investigations on Thermoplastic ZrO<sub>2</sub> Pastes

F. Clemens, R. Corbari, T. Graule; EMPA, Section High Performance Ceramics, CH-8600 Dübendorf, Switzerland

## Introduction

Thin ceramic tubes with a wall thickness less than 300 µm are interesting for various applications, for example as protective layer for a plastic shaft, filter structures, thermowells, and heat exchangers. Advantages are higher wear and lower filtration resistance, or faster heat transfer.

For producing such tubes, water based duroplastic or thermoplastic binder systems can be used. The main problem with water-based binders is the collapsing of the tubes after extrusion.

Extruded duroplastic compounds cannot be recycled whereas thermoplastic binders can be recycled and do not collapse after extrusion.

To optimize the ceramic thermoplastic compound for the tube production, ZrO<sub>2</sub> powder, Hostamont and polyethylene were mixed in different percentage by volume.

Rising the amount of ZrO<sub>2</sub> powder, the torque increases, and getting a steady state takes a longer time.

Table 1 presents the color and the consistency after kneading. In the compounds with more than 50 vol.-% ZrO<sub>2</sub> powder the color changed after mixing because of abrasion.

| vol.-% ZrO <sub>2</sub> | color | cold consistency  |
|-------------------------|-------|-------------------|
| 45                      | beige | plastic paste     |
| 47                      | beige | plastic paste     |
| 50                      | beige | plastic granulate |
| 52                      | grey  | plastic granulate |
| 54                      | grey  | plastic granulate |

Tab. 1: Compound properties after kneading

## Torque Rheometer Test

Internal mixers used by industry as well as torque rheometers are designed to create as much turbulent flow as possible to provide optimum mixing for heterogeneous compounds. Torque rheometers are not designed to define the absolute viscosity of the compounds, but it makes a good sense to apply a certain rotor speed and to measure the reactionary torque on the rotors. Two batches for all different compounds were kneaded. After kneading, the torque was measured three times with 5 rpm, at 160 °C, for all compounds. For a stable process the torque should always be the same. Figure 3 shows the result of the test.

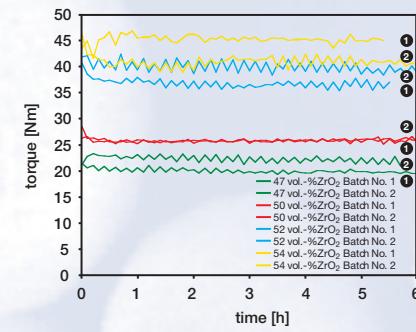



Fig. 3: Torque for different compounds (5 rpm, 160 °C)

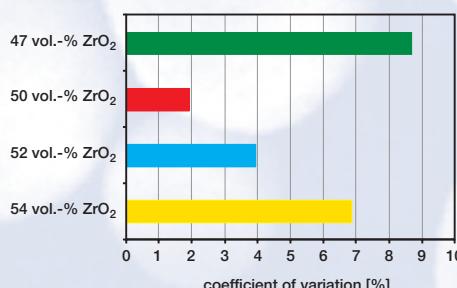



Fig. 4: Comparison of the coefficient of variation

The lowest coefficient of variation between two charges was reached with a compound of 50 vol.-% ZrO<sub>2</sub> powder.

## Capillary Rheometry Test

For heterogeneous material it is very difficult to define the absolute viscosity, because the homogeneity can change during the test. Therefore, only the pressure between the different compounds is compared. All compounds, except 54 vol.-% ZrO<sub>2</sub>, could be extruded. Figure 5 shows the pressure during the tests with the different compounds.

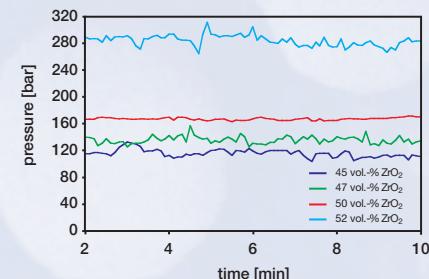



Fig. 5: Pressure for different compounds during the test (20 rpm, at 160 °C)

The compound with 50 vol.-% ZrO<sub>2</sub> is the most homogenous material.

## Tube Production

Tubes were produced with all compounds. Table 2 shows some visual properties seen after extrusion.

| vol.-% ZrO <sub>2</sub> | color | roundness | pressure   |
|-------------------------|-------|-----------|------------|
| 45                      | beige | -         | not stable |
| 47                      | beige | -         | not stable |
| 50                      | beige | +         | stable     |
| 52                      | grey  | +         | not stable |

Tab. 2: Visual properties after extrusion

In Figure 6 sintered tubes with a wall thickness of 200 µm are depicted.



Fig. 6: Tubes after sintering

## Conclusions

With the compound having 50 vol.-% ZrO<sub>2</sub> the best results concerning homogeneity of pastes and extrudability were reached. Table 3 shows the results.

|                          | pressure             |
|--------------------------|----------------------|
| torque rheometer test    | reproducible batches |
| capillary rheometry test | stable pressure      |
| tube production          | beige color          |
|                          | stable process       |

Tab. 3: Results of compound 50 vol.-% ZrO<sub>2</sub>

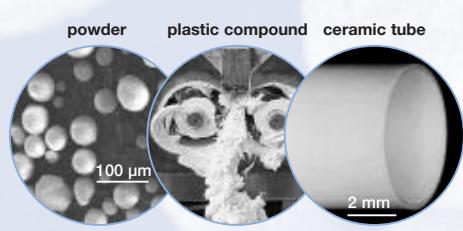



Fig. 1: Material in different process stages

## Compound Preparation

Figure 2 shows the results of the kneading process for different compounds.

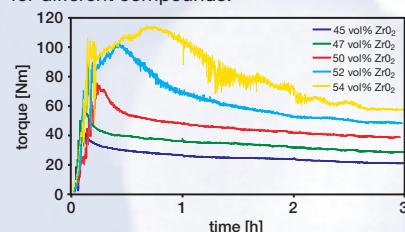



Fig. 2: Kneading results of different compounds