气体进入固体的扩散过程可以简单地分为三类[22]:本体扩散(Bulk diffusion)、努森(Knudsen diffusio)或分子扩散(Molecular diffusion)以及活性扩散(Actiwated diffusion)。
区别三者的依据是气体分子的平均自由程相对于吸附剂孔径的大小。物理吸附通常是一非常迅速的过程,约在几小时内即达到平衡。如果吸附经历很长的平衡时间,这将意味着活性扩散的发生。这是由于纳米空间的缩颈以及在较低的吸附温度和较低的吸附分压下,吸附质分子没有足够的动能以穿透整个纳米空间。此时,吸附质与吸附剂孔壁之间的相互作用就显得尤为重要,这一相互作用是色散力与排斥力的叠加。当吸附空间尺寸与扩散分子相当接近时,排斥作用占主导地位,吸附质需具有一定的动能才能进入纳米空间,即存在一活化能。在活性扩散范围内,扩散速率为控制因素,吸附质分子尺寸的微小变化会导致活化能的剧烈变化。因此,在与吸附质分子尺寸相当的吸附剂上对有微小尺寸差别的不同吸附质其吸附速率的差异,可导致宏观上广义的筛分效应[22]。通过变压吸附(PSA-Pressure Swing Adsorption)而实现的氧气与氮气的分离即是该原理的充分体现[23,24]。孔径尺寸经过调整的微孔炭允许相对小的O_2分子(直径0.346nm)快速扩散进入纳米空间内部而阻滞相对大的N_2分子(直径0.364nm)。由于O_2的动力学选择性优于N_2,所以当CMS与空气接触时,会形成富氧吸附相,这就是用CMS进行空气分离的基础。动力学选择性与吸附容量具有时间依赖性。在热力学选择性上,O_2与N_2相比,并无明显优势。如果允许CMS长时间与空气接触,最终也可以使N_2扩散进入CMS的孔内,形成了与空气组成相同的吸附相。

Fig.1-6 The effect of activated diffusion upon the DR micropore volume of
a wide pore carbon